联系方式 | 手机浏览 | 收藏该页 | 网站首页 欢迎光临上海盈蓓德智能科技有限公司
上海盈蓓德智能科技有限公司 智能在线监诊系统|西门子Anovis|声音与振动分析|主动减振降噪系统
15901667570
上海盈蓓德智能科技有限公司
当前位置:上海盈蓓德智能科技有限公司 > 公司资讯 > 上海国产刀具状态监测数据 上海盈蓓德智能科技供应

上海国产刀具状态监测数据 上海盈蓓德智能科技供应

2024-09-25 06:03:16

刀具状态监测的重要性(一)保证加工质量刀具的磨损和破损会导致切削力的变化、切削温度的升高以及加工表面粗糙度的增加。通过实时监测刀具状态,可以及时调整加工参数或更换刀具,从而保证加工零件的尺寸精度、形状精度和表面质量。(二)提高生产效率及时发现刀具的磨损和破损,避免因刀具失效而导致的生产中断和机床停机时间的增加,能够有效地提高机床的利用率和生产效率。(三)降低生产成本通过合理地监测刀具状态,可以延长刀具的使用寿命,减少刀具的更换次数,降低刀具的采购成本。同时,避免因刀具失效而造成的废品和返工,也能够降低生产成本。刀具状态监测系统是指其在长时间运行中的稳定性和一致性。多次重复相同的加工过程,观察监测结果是否稳定。上海国产刀具状态监测数据

一)汽车制造行业在汽车发动机缸体、缸盖等零部件的加工中,采用刀具状态监测技术可以实时监测刀具的磨损情况,及时更换刀具,保证加工质量和生产效率。例如,某汽车制造企业通过安装切削力传感器和振动传感器,对发动机缸体加工过程中的刀具状态进行监测,刀具更换次数减少了30%,生产效率提高了15%。(二)航空航天制造行业航空航天零部件的加工精度要求极高,刀具的状态对加工质量影响巨大。通过刀具状态监测技术,可以有效地保证零件的加工精度和可靠性。例如,在飞机机翼的加工中,利用声发射传感器和温度传感器对刀具状态进行监测,成功避免了因刀具破损而导致的零件报废。(三)模具制造行业模具制造中经常使用复杂形状的刀具,刀具的磨损和破损难以直观判断。采用刀具状态监测技术可以及时发现刀具的异常,提高模具的加工质量和使用寿命。例如,某模具制造企业通过安装图像传感器对刀具的刃口进行实时监测,模具的加工精度提高了20%,模具的使用寿命延长了30%。上海基于振动分析的刀具状态监测刀具状态监测需要实时响应,以便及时采取措施。但复杂的人工智能模型可能存在延迟,影响生产效率。

针对刀具磨损状态在实际生产加工过程中难以在线监测这一问题,提出一种通过通信技术获取机床内部数据,对当前的刀具磨损状态进行识别的方法。通过采集机床内部实时数据并将其与实际加工情景紧密结合,能直接反映当前的加工状态。将卷积神经网络用于构建刀具磨损状态识别模型,直接将采集到的数据作为输入,得到了和传统方法精度近似的预测模型,模型在训练集和在线验证试验中的表现都符合预期。刀具磨损状态识别的方法在投入使用时还有一些问题有待解决:①现有数据是在相同的加工条件下测得的,而实际加工过程中,加工参数以及加工情景是不断变化的,因此需要在下一步的研究中,进行变参数试验,考虑加工参数对于刀具磨损的影响,并针对常用的一些加工场景,建立不同的模型库。变换加工场景,通过获取当前场景,及时匹配相应的预测模型即可。②本研究中的模型是一个固定的模型。今后需要根据实时的信号以及已知的磨损状态,对模型进行实时更新,从而在实时监测过程中实现自学习,不断提升模型的精度和预测效果。盈蓓德科技-刀具状态监测。

刀具状态监测的研究方法主要包括以下几种:直接测量法:光学测量法:利用激光干涉、机器视觉等光学原理,对刀具的刃口形状、磨损量等进行非接触测量。接触测量法:通过电感式、电容式等接触式传感器直接测量刀具的磨损量。图像测量法:拍摄刀具图像,借助图像处理技术分析获取刀具的磨损信息。间接测量法:切削力监测:通过安装力传感器测量切削力的变化,刀具磨损会导致切削力增大。切削温度监测:利用红外传感器、热电偶等测量切削区域的温度,刀具磨损使切削温度升高。振动监测:使用加速度传感器采集切削过程中的振动信号,分析其特征参数来判断刀具状态。声发射监测:基于材料变形和断裂时释放的弹性波来监测刀具状态。基于人工智能的监测方法:机器学习算法:如支持向量机(SVM)、人工神经网络(ANN)等,对多源监测信号进行融合和分析。深度学习算法:如卷积神经网络(CNN)、循环神经网络(RNN)等,挖掘监测信号中的潜在特征。灵敏度高的刀具状态监测系统,能对刀具微小磨损或早期故障迹象的检测能力,能够在刀具磨损初期就发现问题。

刀具状态监测的方法(一)直接测量法直接测量法是通过直接测量刀具的几何参数来判断刀具的磨损状态。常用的直接测量方法包括光学测量法、接触测量法和图像测量法等。光学测量法利用光学原理,如激光干涉、机器视觉等技术,对刀具的刃口形状、磨损量等进行非接触测量。这种方法具有测量精度高、速度快的优点,但对测量环境要求较高。接触测量法通过接触式传感器,如电感式传感器、电容式传感器等,直接测量刀具的磨损量。这种方法测量精度较高,但容易对刀具表面造成损伤。图像测量法通过拍摄刀具的图像,然后利用图像处理技术对图像进行分析,获取刀具的磨损信息。这种方法直观、方便,但图像处理的算法较为复杂。刀具状态监测中的人工智能技术,是通过对大量的使用数据进行学习和分析,实现对刀具状态的准确判断。上海国产刀具状态监测数据

刀具状态监测需要采用更高效的训练算法和优化算法,如随机梯度下降的变体、自适应优化算法等。上海国产刀具状态监测数据

刀具磨损状态在实际生产加工过程中难以在线监测这个问题,提出一种通过通信技术获取机床内部数据,对当前的刀具磨损状态进行识别的方法。通过采集机床内部实时数据并将其与实际加工情景紧密结合,能直接反映当前的加工状态。将卷积神经网络用于构建刀具磨损状态识别模型,直接将采集到数据作为输入,得到了和传统方法精度近似的预测模型,模型在训练集和在线验证试验中的表现都符合预期。刀具磨损状态识别的方法在投入使用时还有一些问题有待解决:①现有数据是在相同的加工条件下测得的,而实际加工过程中,加工参数以及加工情景是不断变化的,因此需要在下一步的研究中,进行变参数试验,考虑加工参数对于刀具磨损的影响,并针对常用的一些加工场景,建立不同的模型库。变换加工场景时,通过获取当前场景,及时匹配相应的预测模型即可。②本研究中模型是一个固定的模型。今后需要根据实时的信号以及已知的磨损状态,对模型进行实时更新,从而在实时监测过程中实现自学习,不断提升模型的精度和预测效果。上海国产刀具状态监测数据

关于我们

盈蓓德科技是一家专注于测试测量产品、系统及服务的高新技术企业。技术团队以博士、硕士为主,深耕NVH领域,专注对振动与噪声的研究,覆盖汽车、船舶、消费类电子等多个行业。产品与系统主要应用于设备下线测试、功能测试、在线状态智能监诊等。 盈蓓德科技凭借丰富的项目经验、过硬的技术实力、完善的客户服务,赢得了市场与客户的认可。同时与NI、Verisco、北智等多家供应商也保持着长期合作关系,与西门子也建立了深入的技术合作,是西门子系统联盟商之一。 盈蓓德坚持空杯心态,不断改进自己,坚持用创新思维和可靠的技术,从客户需求出发,于客户实用性处落脚,为客户提供专业的测试测量系统方案。

上海盈蓓德智能科技有限公司公司简介

联系我们

本站提醒: 以上信息由用户在珍岛发布,信息的真实性请自行辨别。 信息投诉/删除/联系本站