2024-10-13 06:01:49
近年来,声学品质已成为一个日益重要的话题。特别是在汽车行业,在**化产品升级以及向电驱汽车的转型浪潮中,客户的期望从轰鸣的发动机声音逐渐转向安静舒适驾驶体验。因此,不仅在研发阶段,在生产过程中对NVH声学质量、噪音测试、异音测试的要求也越来越高。精心设计的生产下线台架上的EOL声学测试系统可以发现"有异响"的产品,同时又远远不仅限于此。通过基于被测产品的动力流和齿数等机械结构信息进行物理建模,可以将不规则异响噪音定位于特定部件和找到根本原因,从而实现高效维修。进行异响检测,确保电机、传动系统和悬挂系统等关键部件的质量稳定性和耐久性。上海旋转机械异响检测方案
可以用耳朵靠近设备,或者使用听诊器等工具进行检测。这种方法对于一些明显的异响问题比较有效,但对于一些轻微的异音可能不太敏感。振动法:通过检测产品或设备的振动情况来判断是否存在异音问题。可以使用振动传感器等设备进行检测。振动法可以发现一些隐蔽的故障,但需要专业设备和技术支持。红外热像法:通过红外热像仪检测产品或设备运行过程中的温度变化,判断是否存在异常情况。这种方法可以发现一些电气故障引起的异音问题,但同样需要专业设备和技术支持。上海稳定异响检测技术找出隐藏的质量缺陷尽管测试中没有主观异响或者噪音,但也可能存在限制产品使用寿命的耐久性质量缺陷。
机器学习模型训练:利用大量包含正常和异常情况的数据对机器学习模型进行训练。通过监督学习算法,使模型能够学习并识别正常声音与异常声音之间的区别。实时监测与异常检测:将训练好的机器学习模型集成到生产线的控制系统中,实现实时监测。当系统检测到异常声音时,能够在秒级响应内触发警报,通知操作人员及时采取相应措施。结果展示与记录:将检测结果以直观的方式展示给操作人员,如通过用户界面显示测试结果和故障源定位信息。记录并分析所有监测数据,以便后续跟踪和改进。
特征提取:从预处理后的声音信号中提取特征参数,如频率、能量、时域统计特征等。这些特征参数有助于准确识别和分析异响问题。异响识别:利用机器学习、深度学习等技术对提取的特征参数进行分析,识别出异常声音的类型和来源。这一步骤可能涉及训练模型、优化算法等工作。异响判定:根据识别结果,对异常声音进行评估和判断,进行OK与NG结果判定。检测技术:频谱分析:将声音信号转换为频谱图,观察不同频率成分的分布情况,以识别异常声音。振动、异音、异响生产下线检测系统是安装在生产下线测试台架上的测量系统。
检测方法与技术人工检测:传统方式:依靠有经验的听音师傅在产线上通过耳听结合长期积累的检测经验,判别产品是否有异音问题。弊端:人工检测存在一致性差、缺乏统一判定标准、准确率低、可靠性差等问题,且易受产线环境噪声干扰。自动化检测:技术原理:基于心理声学和故障机理,通过传感器获取电机数据,对数据进一步分析处理,判定故障类型及定位故障源。优势:自动化检测具有快速、稳定、准确等优点,能够显著提高检测效率和可靠性。对于消费类电子产品和家用电器等,异响检测不仅可能影响产品的性能和寿命,还可能影响用户的使用体验。上海汽车异响检测联系方式
通过异响检测,制造商可以及时发现并改进产品设计或生产工艺中的缺陷,提升产品的整体品质和用户满意度。上海旋转机械异响检测方案
综合运用经验、专业知识和测试设备进行故障排查。经验丰富的技师可以通过声音、振动和触感等迅速判断问题的根源。使用先进的检测设备和软件工具进行异响检测和分析,如虹科PicoNVH振动异响检测仪等。这些设备可以记录并保存故障数据,便于后续详细分析和远程技术支援。加强车辆设计和制造过程中的NVH控制,从源头上减少异响的产生。例如,优化发动机悬置部件的减振效果、改进车厢前围和地板的隔音技术等。综上所述,异响检测NVH是保障车辆乘坐舒适性和整体性能的重要环节。通过综合运用多种检测方法和解决方案,可以及时发现并排除异响问题,提高车辆的安全性和可靠性。上海旋转机械异响检测方案